

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Beneficial Effects of Prebiotic Oligosaccharides added to Infant Formulas

Jacques G. Bindels

Danone Research, Centre for Specialized Nutrition

Amsterdam, The Netherlands

contents

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

- ~ Human milk oligosaccharides
- Concept of scGOS/lcFOS
- ~ Prebiotic effects of scGOS/lcFOS
- ~ Immune-modulating effects of scGOS/IcFOS
- ~ Conclusions

human milk oligosaccharides

 quantitatively the 3rd fraction in human milk (after lactose and lipids, before protein)

	Human milk (g/L)	Cow's milk (g/L)
Lactose	55-70	40-50
Oligosaccharides	6.0-12.0	Traces

- è resist digestion in the upper part of the GI tract
- è (partly) fermented in the colon by endogenous microflora
- e considered to represent the "bifidus factor" in human milk

~ But:

- è a very heterogeneous fraction with > 100 different structures (analyses with Maldi-MS).
- è variability: genetic control, time of lactation

human milk oligosaccharides

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

human milk oligosaccharides

biological functions

- è Highly specific:
 - receptors analogues for pathogenic bacteria and viruses
- è Generalistic:
 - 4 substrate for specifically bifidobacteria and lactobacilli and thus act as prebiotics (cf. human milk fibre)
- what can we learn from human milk oligosaccharides ?
 - The generalistic functionality may be simulated by food prebiotics
 - è heterogeneity probably needed for broad activity spectrum
 - è 90% neutral charge
 - 4 high amount of short chain length structures
 - 4 low amount of higher chain length structures
 - è 10% negatively charged (acidic structures)

concept of scGOS/lcFOS

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

90 % scGOS: short-chain b-Galacto-OligoSaccharides (from lactose) 10 % IcFOS: long-chain b-Fructo-OligoSaccharides (from chicory)

IcFOS e.g. 10mer (DP10)

GOS e.g. 3mer (DP3)

concept of scGOS/lcFOS

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

~

why is the scGOS/IcFOS concept so special ?

- short chain GOS
 - è the most natural "lactose-derived" oligosaccharide
 - The lowest incidence of side effects (gas production / bloating) compared to similar short-chain oligosacharides
- Iong chain FOS
 - The most suitable slowly fermentable substrate to allow fermentation all over the full length of the large intestine
- extensive portfolio of experimental research and clinical studies

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

5th International Whey Conference

IWC

PARIS

effect on gut microflora (term infants after 28 days formula feeding)

Moro et al. (2002) JPGN 34: 291-295

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

5th International Whey Conference

effect on fecal pH

Breastfeeding (n=39)
Prebiotic (n=16)
Standard (n=30)

Data averaged from samples obtained at ages 4, 8, 12 and 16 wk.

Bakker-Zierikzee et al. (2005) Br J Nutr 94: 783-790

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

effect on fecal short chain fatty acids

(formula fed term infants after 6 weeks study formula)

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

effect on reduction of potential pathogens (formula fed term infants after 6 weeks study formula)

Proportion of total bacteria [%]

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Hyper immune- responsiveness:

Allergy

Autoimmunity

Chronic inflammatory diseases

immune disorders

<u>Hypo</u> immune- responsiveness:

Infections

Tumors/metastasis

immune regulation

Resistance to infections Th1 Allergy Th2

 WHEYVOLUTION
 deviations in t-cell regulation balance

 ~ Asthma
 Th2

 ~ Atopic eczema
 Th2

 ~ Coeliac disease
 Th1

 ~ COPD
 Th1

- ~ Cystic Fibrosis
- ~ HIV
- ~ Cancer
- ~ Elderly
- Pregnancy

Th2 -Th2 -Th1 -Th1 -Th1 -Th1 -Th1 ⁻ Th1 ⁻ Th1 ⁻

Th1 ⁻, Th2 -

the newborn baby, born with a Th2 dominance needs to rapidly develop a proper Th1/Th2 balance to prevent allergy (Th2 \downarrow) and to support reactivity to infections (Th1 \uparrow)

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

immune-modulating effects of scGOS/lcFOS

- Influenza vaccination model for Th1 immunity
 - C57BL/6 mice were prefed with prebiotics during
 - 2 weeks prior to the first of 2 vaccinations using a 100 fold diluted vaccin
 - 4 prebiotic ingredients/mixtures tested
 - è 2 groups showed prebiotic activity
 - è in only 1 group: Th1 immune enhancement

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

effect on secretory IgA production at age 26 weeks (assessed as faecal sIgA)

Scholtens et al. (2008) J Nutr 138: 1141-1147

WHEYVOLUTION

- The Moro-Arslanoglu study (2004-2008)
- Aim: investigate effect of scGOS/lcFOS on allergy and infection
- Model: Babies with increased family allergy risk
- Formula: Hydrolysate based infant formula +/scGOS/lcFOS
- Intervention: after BF (<6wk): formula until age of 6 mo

4 papers

- Moro (2006) Arch Dis
 Childh
- è Arslanaglu (2007) J Nutr
- è Arslanaglu (2008) J Nutr
- è Van Hoffen (2008) Allergy

WHEYVOLUTION

immune-modulating effects of scGOS/lcFOS

effect on infections at age 6 months

Arslanoglu et al. (2007) J Nutr 137: 2420-2424

WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION WHEYVOLUTION

Data represent individual results and median of the placebo group and the GOS/FOS group

Van Hoffen et al. (2008) Allergy, e-pub

WHEYVOLUTION

immune-modulating effects of scGOS/lcFOS

effect on infections at 2 yr. follow-up

WHEYVOLUTION

immune-modulating effects of scGOS/lcFOS

effect on allergy at 2 yr. follow-up

Boehm et al.(2005) Nutrafoods 4: 51-57

- The scGOS/lcFOS concept for infant nutrition was developed to maximally emulate the prebiotic functionality of human milk oligosaccharides
 - Prebiotic characteristics and effects on colonic fermentation ecology have been demonstrated for the scGOS/lcFOS concept
 - The scGOS/lcFOS concept for infant nutrition exhibits immunemodulatory characteristics by supporting Th1 and down regulating Th2 immunity, similar to human milk oligosaccharides
 - Clinical endpoints for relevant immune-modulation in early life, reduction in risk for allergy (Th2↓) and infections (Th1↑) are substantiated
 - Current insights suggest an indirect mode of action via an effect on the intestinal flora and a direct effect via Toll-like receptors, dendritic cells and M-cells
 - Immune-modulatory characteristics are rather specific and are not general characteristics of prebiotic ingredients
 - The claim "naturally strengthens your baby's the immune system" has been submitted to EFSA for infant formulas with adequate amounts of scGOS/lcFOS